CCCQS 2014 Evora 06/10/2014

Quantum frustration, entanglement, and frustration-driven quantum phase transitions

F. Illuminati

Università degli Studi di Salerno

S. M. Giampaolo B. C. Hiesmayr Universität Wien Universität Wien

- 1) Frustrated systems
- 2) Toulouse criteria: classical
- 3) Universal measure of total frustration
- 4) Toulouse criteria: quantum
- 5) Frustration and entanglement
- 6) Valence bonds: frustration-driven transitions

Defining and characterizing frustration

Many body systems: global H sum of local terms

Frustration: impossibility to satisfy simultaneously all local terms h_p

Sources of frustration: Classical World

Nontrivial geometry of the underlying physical space, e.g.: Heisenberg antiferromagnet on the 2-d Kagomé lattice

Competing interactions on different length scales, e.g. spin chains with antiferromagnetic n.n. and n.n.n. Interactions.

Sources of frustration: Quantum World

Entanglement: Non-commutativity of the different local interaction terms

Classical Toulouse criteria for frustration

[Formulation 1]: A classical Hamiltonian system is frustrated iff it is impossible to transform it in a fully ferromagnetic model only by means of local spin inversions

[Formulation 2]: A classical Hamiltonian is frustrated iff there exists at least one closed loop for which :

 $(-1)^{N_{af}} = -1$

where N_{af} is the number of antiferromagnetic bonds.

Dicotomic: only two possible answer: yes or no

Ferromagnetic Links

Anti-ferromagnetic Links

Limitations of the Toulouse criteria in the quantum regime

Entanglement: T.C. do not detect quantum frustration

Classical Ising ferromagnet All local terms commute

$$H = -J \left[S_1^z S_2^z + S_2^z S_3^z \right]$$

Minimum of the local energy terms: each pair of spins aligned. Global ground state: all spins aligned. No frustration. *T.C. ok!*

Quantum XX Hamiltonian Local terms do not commute

$$H = -J[(S_1^z S_2^z + S_1^x S_2^x) + (S_2^z S_3^z + S_2^x S_3^x)]$$

The ground state of each pair "in vacuum" is a maximally entangled Bell state. But spin 2 cannot be maximally entangled symultaneously with spins 1 and 3. Monogamy of entanglement ---> Frustration.

However, according to the T.C., there is no frustration!

Universal measure of total frustration

Measure of frustration: the degree of incompatibility between the local "vacuum" ground space and the "dressed" one, namely, the space of the reduced local density matrices in the presence of the many-body interactions.

$$f_p = 1 - Tr(\rho_p \Pi_p)$$

 \prod_{n} : projector onto the local ground space (local GS in "vacuum")

 ρ_p : projection of the global GS on the local GS

$$f_p \ge \epsilon_p^{(d)} \qquad \epsilon_p^{(d)} = 1 - \sum_{k=1}^d \lambda_k^{\downarrow}$$

Frustration-free INES (INEquality Saturating): Non-INES: quantum and $f_p = \varepsilon_p^{(d)} = 0$ $f_p = \varepsilon_p^{(d)} > 0$ $f_p > \varepsilon_p^{(d)}$

Quantum Toulouse Criteria

If the global ground space has degeneracy > 1, the measure of local frustration can depend on the choice of the particular ground state

Maximally Mixed Ground State: convex combination with equal weights of all degenerate ground states. The MMGS preserves the same symmetries of the Global Hamiltonian

Quantum Touluse Criteria:

A model is prototype if 1) there exists at least one local ground state common to all local terms; 2) all coupling vectors are ferromagnetic.

Conjectures:

Quantum Toulouse criterion I - All prototype models are INES.

Quantum Toulouse criterion II – All models obtained from prototype models by local unitary operations and partial transpositions are INES.

No rigorous proof yet. Supported by vast numerical evidence.

Frustration and Entanglement

 $\mathbf{\epsilon}_{p}^{(d)}$

 $\epsilon_{n}^{(1)}$

Pure Ground state

Mixed Ground State Sum of the (convex-roof) bipartite <u>entanglement</u> between p and R and of the <u>classical correlations</u> established by a local measurement performed on p by an ancillary system A.

$$\varepsilon_p^{(d)} = E_{p|R}^{(d)} + C_{p|A}^{(d)}$$

Frustration and Entanglement: generic Heisenberg models (spin 1/2) - I

$$H = \sum_{p} h_{p} \qquad h_{p=(i,j)} = \alpha_{i,j}^{x} S_{i}^{x} S_{j}^{x} + \alpha_{i,j}^{y} S_{i}^{y} S_{j}^{y} + \alpha_{i,j}^{z} S_{i}^{z} S_{j}^{z}$$

H preserve parity along the three spin directions x, y and z

$$D_{p} = \begin{vmatrix} \frac{1}{4} + g_{p}^{zz} & 0 & 0 & g_{p}^{xx} - g_{p}^{yy} \\ 0 & \frac{1}{4} - g_{p}^{zz} & g_{p}^{xx} + g_{p}^{yy} & 0 \\ 0 & g_{p}^{xx} + g_{p}^{yy} & \frac{1}{4} - g_{p}^{zz} & 0 \\ g_{p}^{xx} - g_{p}^{yy} & 0 & 0 & \frac{1}{4} + g_{p}^{zz} \end{vmatrix}$$

 ρ_p admits as eigenstates the maximally entangled Bell states

If all h_p admit a common ground state with d>1 the system is frustration free

Absence of quantum frustration

Frustration and Entanglement: generic Heisenberg models (spin ½) - II

$$\rho_{p} = \begin{vmatrix} \frac{1}{4} + g_{p}^{zz} & 0 & 0 & g_{p}^{xx} - g_{p}^{yy} \\ 0 & \frac{1}{4} - g_{p}^{zz} & g_{p}^{xx} + g_{p}^{yy} & 0 \\ 0 & g_{p}^{xx} + g_{p}^{yy} & \frac{1}{4} - g_{p}^{zz} & 0 \\ g_{p}^{xx} - g_{p}^{yy} & 0 & 0 & \frac{1}{4} + g_{p}^{zz} \end{vmatrix}$$

ρ_ij has as eigenstates the Bell states, and d=1 (nondeg. antiferr. local GS)

Local-term concurrence C_ij

$$C_{ij} = max(0, 1 - 2\varepsilon_{ij}^{(1)}) \ge max(0, 1 - 2f_{ij})$$

$$\sum_{j} max (0, 1 - 2f_{ij})^2 = \sum_{j} C_{ij}^2 \le \tau_i = 1$$

General relation between frustration and monogamy of entanglement!

VBS (dimerized GS): transition to QF (INES)

$$H = J \cos \phi \sum_{i} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \sin \delta S_{i}^{z} S_{i+1}^{z} \right)$$
$$+ J \sin \phi \sum_{i} \left(S_{i}^{x} S_{i+2}^{x} + S_{i}^{y} S_{i+2}^{y} + \sin \delta S_{i}^{z} S_{i+2}^{z} \right)$$

Frustration-driven transition to VBS: observable Behavior of the static structure factor approaching the Majumdar-Ghosh point J_2/J_1 = 1/2

$$S_{f}(k) = \frac{1}{N} \sum_{i,j} \cos(k \, a | i - j |) \langle \vec{S}_{i^{*}} \vec{S}_{j} \rangle$$

Conclusions & Outlook

Summary:

1) Universal measure of total frustration

2) General relation with GS entanglement

3) QuantumToulouse criteria

4) Relation between frustration and monogamy of entanglement in generic Heisenberg models

5) VBS: transition from geometric to quantum frustration

Memos for future directions: 1) Scaling behavior, area laws, and dynamics. Existence of a "frustration length"?

2) Relations with genuine multipartite entanglement.

3) Frustration and globally ordered phases (e.g. topological order).

REFERENCES

S. M. Giampaolo, G. Gualdi, A. Monras, and F. I., Phys. Rev. Lett. 107, 260602 (2011)

U. Marzolino, S. M. Giampaolo, and F. I., Phys. Rev. A 88, 020301(R) (2013)

S. M. Giampaolo, B. C. Hiesmayr, and F. I., arXiv:1410.xxxx